

HeMiBio objective: to create in vitro culture system to evaluate liver fibrosis

C

Bioreactors

Long-term maintenance of HepG2 cells in flow over 2D bioreactor

HeMiÖi

London, October 26-27, 2015

Prill et al., Arch Toxicol, 2015

C

Bioreactors

Bioreacto

- Extracellular sensors
 - Frequency based phosphorescence oxygen sensor
 - Electrodes: glucose, lactate, urea, glutamate
- Intracellular sensors

On-chip (2D flow over bioreactor) toxicity measurement based on a frequency-based phosphorescence oxygen

HeMi

London, October 26-27, 2015

Prill et al., Arch Toxicol, 2015

Electrochemical sensors

Bioreactor

Interference/crosstalk measurements

HeM

Single analyte solutions compared with a solution containing all analytes

Sequential exposure to the different analytes with no washing in-between

Recombination in FRT-flanked cassette in AAVS1 locus

Bioreactor

HeMiBio

Recombination of NFkB sensor in AAVS1 locus

Bioreactor

London, October 26-27, 2015

Ordovás L et al., Stem Cell Reports, 2015

Bioreactors

Bioreacto

- Hepatocytes: with or without need for drug metabolisation
- Hepatic stellate cells?
- Hepatic sinsoidal endothelial cells?
- Immune and kupffer cells?

Depends on what one wishes to model!

Liver fibrosis

In vivo liver fibrosis

Bioreacto

Healthy

Hepatocyte

Hepatic Stellate Cells (HSC) "quiescent"

Sinusoidal endothelial cells

Kupffer cell

Sinusoid lumen with normal resistance to blood flow

In vitro model?

Human stellate cell signature?

London, October 26-27, 2015

El Taghdouini et al. *Oncotarget 2015* Coll M, et al. *Sci Rep 2015:11549*

Characterisation 1.

HeMi

Universiteit

London, October 26-27, 2015

Human primary stellate cells **Differentiated HepaRG (Biopredic)**

Sofia Leite, van Grunsven lab

Bioreact

1. Characterisation

HeM

2. Testing fibrotic compounds

Methotrexate - MTX

London, October 26-27, 2015

Human primary stellate cells Differentiated HepaRG (Biopredic)

Sofia Leite, van Grunsven lab

 Exposure days
 Read-out

Cell Survival

0

a Methotrexate

Activation at the gene level

MTX is highly toxic after repeated exposures

Repeated exposure to MTX induces a strong activation of HSCs

In vitro fibrosis?

Repeated exposure to MTX induces fibrosis in vitro

HeM

London, October 26-27, 2015

Sofia Leite, van Grunsven lab

Thus, in vitro fibrosis modeling appears possible

Tissue **Organ Level** Cellular Level Level **Fibrosis** AOP Macrophage Liver Hepatic TGF-B1 Collagen Hepatocyte activation Stellate Cell expression accumulation injury and Fibrosis Activation recruitment

3D Hepatic co-culture

- Hepatocyte functional (>21 days)
- > HSCs quiescent
- Responds to fibrotic compounds
- Single dose

HeMi

- Repeated dose
- Compound dependent response

Sofia Leite, van Grunsven lab

Alternative sources of hepatocytes

• UpCyte Hepatocyte

• iPSC-derived hepatocytes

Differentiated UpCyte hepatocytes have some of on the mature hepatocyte functions

• UpCyte Hepatocyte

iPSC-derived hepatocytes

- Is pluripotent
- Can thus, theoretically, generate all cells needed to model fibrosis
- Can be generated from multiple donors, reflecting differences in metabolisation and toxicity

But, can we generate hepatocytes (other cells) from PSC?

Hepatocytes from hPSCs

Bioreactor

London, October 26-27, 2015

HeM

Hepatocytes from hiPSCs: can we learn something from transcriptomic studies compared with development?

Figure 7-18: The PC2 values for mouse and human samples are plotted against their unified developmental time (DT). The DT increases with increase in maturity, and most HLCs fall within DT corresponding to E15.5

HeN

HENIGIO HENIGIO

Blue: Mouse development (E9.5,E11.5,E13.5,E15.5 and E19.5) Black : Hu Differentiation (D6,D10,D14,D20,D20)

London, October 26-27, 2015

Raju et al, submitted

In contrast to primary hepatocytes, iPSC hepatocytes still

use glycolysis

HeM

Overexpression of missing transcription

Overexpression of HNF1a_FOXA3_ProxI induces ALB and CYP3A4, but does not decrease AFP → still immature

Rel expression dox vs CTL

HeMi

Overexpression the master-regulator of mitochondrial biogenesis, PGC-1 α , increases OxPhos (some) \rightarrow still immature

HeN

Solutions?

C

- Induction of missing TFs seems not to be sufficient to create mature hepatocytes
 - Can combined activation of missing TFs and repression of incorrectly expressed TFs accomplish this?
- Differentiation methods not good enough!
 - Growth factors, medium changes?

Addition of LCA and vitamine K (present postnatally) induces (some) differentiation → still immature

Induction of missing TFs seems not to be sufficient to create mature hepatocytes

Conclusion

- Can combined activation of missing TFs and repression of incorrectly expressed TFs accomplish this?
- Differentiation methods not good enough!
 - Growth factors? Incremental improvement
- Attempt to make only hepatocytes (or HSCs, LSECs) incorrect: i.e. create in combination!
- Differentiations commonly done in plastic dishes, in 2D; which is known to cause very fast de-differentiation of primary hepatocytes

\diamond 3D in bioreactor!!

- created several microfluidic bioreactors that can be used for long-term liver toxicity testing as well as to optimize long-term hepatocyte culture
- created extracellular sensors that can assess liver cell toxicity
- created master PSC lines that allows very fast introduction of Tox sensing cassettes
- developed an in vitro model that can assess fibrosis in a medium-term toxicity setting using HepaRG and primary stellate cells
- tested multiple candidate hepatocyte populations (UpCyte and PSC derived) as genetically more diverse alternatives for HepaRG cells; however all still fall short of primary hepatocytes

crofuldic

HeMiBio

UNIVERSITY OF OSLO Fraunhofer Vrije Universiteit Brussel

HeMiBio is jointly funded by the European Commission within its FP7 Programme and Cosmetics Europe - The Personal Care Association as part of the SEURAT cluster; Contract number HEALTH-F5-2010-266777

